
Battle Royale

Albert Vaca Omer Giménez Jordi Petit Salvador Roura

January 15, 2014

1 Game rules

In this game, each player has control over an army of knights and farmers in a
tile-based board.

The goal of the game is to ”farm” as many tiles as you can, converting them
to your team color. Your score at a given time is the number of tiles of your
color at that point, and the winner is the player who has more tiles of his color
at the end of the game.

At the beginning of the game, all the knights and farmers of a player are
randomly placed at the spawn point of that player: one of the four quadrants
of the board.

Each round the players can move each unit one position in one of the 4
cardinal directions.

Moving a farmer to an empty tile will convert the tile to the farmer’s team
color, even if it already has the color of a different team. Moving a farmer to an
non-empty tile is an invalid move.

Moving a knight to a tile occupied by another player’s unit will make it
attack that unit, performing a random amount of damage. If the health of a
unit drops to less or equal than zero, that unit will be converted to the attacking
player’s team and will respawn at his spawn quadrant with full health. (When
this happens, the players can say out loud: Wololo!)

Deliberately not moving a unit will increase its health by a given constant.
A unit cannot recover more health than its initial amount. Performing an in-
valid move will result in that unit not moving, but will not regenerate health.

The boards will have ”walls”, obstacles that units cannot go through. Try-
ing to move a unit into a wall is an invalid move.

Other invalid moves are moving a farmer to a tile occupied by another unit,
or moving a knight to a tile occupied by a unit of the same team.

If the board does not have walls all around, moving out of the board will
make a unit wrap to the opposite side.

1



The order of the actions performed by players is chosen at random, so you
cannot expect any execution order of your actions. A notable case is when two
units try to move to the same tile: the unit that happens to move first will be
able to occupy the tile, while the second one will not.

A game is defined by a board and the following set of parameters:

• nb players : Number of teams in the game.

• nb rounds: Number of rounds that will be played.

• nb farmers: Number of farmers per player.

• nb knights: Number of knights per player.

• farmers health : The maximum (and initial) health of a farmer.

• knights health : The maximum (and initial) health of a knight.

• farmers regen : The amount of health a farmer will regenerate when not
moving.

• knights regen : The amount of health a knight will regenerate when not
moving.

• damage min: The minimum amount of damage a knight will inflict when
attacking.

• damage max: The maximum amount of damage a knight will inflict when
attacking.

• rows: Vertical size of the board.

• cols : Horizontal size of the board.

2



2 Programming

The first thing you should do is download the source code.
The source code includes a C++ program that runs the games and an HTML

viewer to watch them in a nice animated format. Also, a ”demo” player is
provided to make it easier to start coding your own player.

2.1 Running your first game

Here we will explain how to run the game under Linux, but it should work
under Windows, Mac, FreeBSD, OpenSolaris... You will only need g++ and
make installed on your system, plus a modern browser like Mozilla Firefox or
Chromium.

3



1. Open a console and cd to the directory where you extracted the source
code.

2. Run make all to build the game and all the players. Note that our Make-
file will identify as a player any file matching the expression ”AI*.cc”.

3. Make should create an executable file called Game. This executable allows
you to run a game using a command like:

./Game Demo Demo Demo Demo < maze.cnf > game.br

Here, we are starting a match with 4 instances of the player ”Demo” (in-
cluded with the source code), in the board defined in ”maze.cnf”. The
output of this match will be redirected to ”game.br”.

4. To watch the game, open the viewer (viewer.html) with your browser
and load the ”game.br” file.

Use ./Game --help to see a list of parameters you can use. Particularly
useful is ./Game --list, that will show a list with all the recognized player
names.

If needed, remember you can run make clean to delete the executable and
object files and start over the build.

2.2 Adding your player

To create a player copy the file AINull.cc or AIDemo.cc to a new file with the
same name format (AIWhatever.cc).

Then, edit the file you just created and change the

#define PLAYER NAME Demo

line to your own player name. The name you choose for your player must be
unique, non-offensive and less than 12 letters long. This name will be shown
in the website and in the matches.

Then you can start implementing the virtual method play () , inherited from
the base class Player. This method will be called every round and is where your
player should decide what to do, and do it.

Of course, you can define auxiliary methods and variables inside your player
class, but the entry point of your code will always be this play () method.

From your player class you can also call functions to access the board state
(defined in the Board class in Board.hh) and to command your units (defined
in the Action class in Action.hh). Those functions are made available to your
code using inheritance, but do not tell your Software Engineering teachers be-
cause they might not like it. The documentation about the available functions
can be found both in the header files of the above mentioned classes (and also
PosDir.hh), and as a PDF you can download from the game website.

4



Note that you should not edit the factory () method from your player class,
nor the last line that adds your player to the list of available players.

2.3 Restrictions when submitting your player

When you think your player is strong enough to enter the competition, you
should submit it to the Jutge. Since it will run in a secure environment to pre-
vent cheating, some restrictions apply to your code:

• All your source code must be in a single file (AIWhatever.cc).

• Your code cannot use global variables (use attributes in your class in-
stead).

• You are only allowed to use standard libraries like vector, map, cmath...

• Your code cannot open files nor do any other system calls (threads, forks...).

• Your CPU time and memory usage will be limited, while they are not in
your local environment.

• Your program should not write to cout nor read from cin. You can write
debug information to cerr, but remember that doing so on the code you
upload can waste part of your limited CPU time.

3 Tips

• Read the headers of the classes you are going to use. Do not worry about
the private parts or the implementation.

• Start with simple strategies, easy to code and debug, since this is exactly
what you will need at the begining.

• Define simple (but useful) auxiliar methods, and make sure they work prop-
erly.

• Before competing with your classmates, focus on defeating the ”Dummy”
player. This already gives you one extra point!

• Keep a copy of the old versions of your player. When you try to improve
it, make it fight against its previous incarnations to measure the improve-
ment.

• As always compile and test your code often. It is much easier to trace a
bug when you only have changed few lines of code.

• Use cerr to output debug information and add asserts to make sure the
code is doing what it should do. Remember to remove the cerrs before
uploading your code, because it makes the execution slower.

5



• When debuging a player, remove the cerr you may have in the other
player’s code, to make sure you only see the messages you want.

• If using cerr is not enough to debug your code, learn how to use valgrind,
gdb or any other debugging tool, they are quite useful!

• Switch on the DEBUG option in the Makefile, it will allow you to get useful
backtraces when your program crashes. There is also a PROFILE option
you can use.

• Make sure your program is fast enough, the CPU time you are allowed
to use is rather short.

• Try to figure out the strategies of the other players watching the games.
This way you could try to defend against them or even improve them in
your own player.

• Do not give your code to anybody. Not even an old version. We are
using JPlag and other plagiarism detectors to check the programs, not
only between them but also against other years submissions.

• You could, however, share the compiled .o files or (the easy way) just use
the website to play against your friends.

• You can submit new versions of your program at any time.

• Do not wait to the last minute to submit your player. When there are lots
of submisions at the same time, it will take longer for the server to run
the games, and maybe it is too late!

• And again: Keep your code simple, build often, test often. Or you will
regret.

6


