Jutge.org

The Virtual Learning Environment for Computer Programming

Approximation of e

The Taylor series of the function e^{x} is

$$
e^{x}=\sum_{i \geq 0} \frac{x^{i}}{i!} .
$$

Note that this series has an infinite number of terms. However, for any x we can get an approximation of e^{x} by adding some of the first terms of the series (of course, the more terms, the better the result). In particular, chosing $x=1$ gives us a method to compute $e \simeq 2^{\prime} 71828182845904523536$:

$$
e=\sum_{i \geq 0} \frac{1}{i!} .
$$

Write a program that, for every given natural number n, prints the approximation of e that we get by adding the n first terms of the series above.

Input

Input consists of several natural numbers n between 0 and 20 .

Output

For every given n, print with 10 digits after the decimal point the approximation of e that we get by adding the n first terms of the series above.

Observation

Because of overflow reasons, do all the computations for this exercise using real numbers.

Sample input

0
1
3
20

Problem information

Author: Salvador Roura
Translator : Carlos Molina
Generation : 2024-04-30 15:22:16
© Jutge.org, 2006-2024.
https://jutge.org

