Jutge.org

The Virtual Learning Environment for Computer Programming

Fermat's last theorem (1)

A famous theorem of the mathematician Pierre de Fermat, proved after more than 300 years, states that, for any natural number $n \geq 3$, there is no natural solution (except for $x=0$ or $y=0$) to the equation

$$
x^{n}+y^{n}=z^{n} .
$$

For $n=2$, by contrast, there are infinite non-trivial solutions. For instance, $3^{2}+4^{2}=5^{2}$, $5^{2}+12^{2}=13^{2}, 6^{2}+8^{2}=10^{2}, \ldots$.

Write a program that, given four natural numbers a, b, c, d with $a \leq b$ and $c \leq d$, prints a natural solution to the equation

$$
x^{2}+y^{2}=z^{2}
$$

such that $a \leq x \leq b$ and $c \leq y \leq d$.

Input

Input consists of four natural numbers a, b, c, d such that $a \leq b$ and $c \leq d$.

Output

Print a line following the format of the examples, with a natural solution to the equation

$$
x^{2}+y^{2}=z^{2}
$$

that fulfills $a \leq x \leq b$ and $c \leq y \leq d$. If there is more than one solution, print the one with the smallest x. If there is a tie in x, print the solution with the smallest y. If there are no solutions, print "No solution!".

Sample input 1

```
25413
```


Sample input 2

$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$

Sample output 1
 $3^{\wedge} 2+4^{\wedge} 2=5^{\wedge} 2$

Sample output 2

No solution!

Problem information

Author: Salvador Roura
Translator : Carlos Molina
Generation : 2024-04-30 20:08:19
© Jutge.org, 2006-2024.
https://jutge.org

