Jutge.org

The Virtual Learning Environment for Computer Programming

Fermat's last theorem (1)

A famous theorem of the mathematician Pierre de Fermat, proved after more than 300 years, states that, for any natural number $n \ge 3$, there is no natural solution (except for x = 0 or y = 0) to the equation

$$x^n + y^n = z^n.$$

For n = 2, by contrast, there are infinite non-trivial solutions. For instance, $3^2 + 4^2 = 5^2$, $5^2 + 12^2 = 13^2$, $6^2 + 8^2 = 10^2$,

Write a program that, given four natural numbers *a*, *b*, *c*, *d* with $a \le b$ and $c \le d$, prints a natural solution to the equation

$$x^2 + y^2 = z^2$$

such that $a \leq x \leq b$ and $c \leq y \leq d$.

Input

Input consists of four natural numbers *a*, *b*, *c*, *d* such that $a \le b$ and $c \le d$.

Output

Print a line following the format of the examples, with a natural solution to the equation

$$x^2 + y^2 = z^2$$

that fulfills $a \le x \le b$ and $c \le y \le d$. If there is more than one solution, print the one with the smallest x. If there is a tie in x, print the solution with the smallest y. If there are no solutions, print "No solution!".

Sample input 1	Sample output 1
2 5 4 13	$3^2 + 4^2 = 5^2$
Sample input 2	Sample output 2
1 1 1 1	No solution!

Problem information

Author : Salvador Roura Translator : Carlos Molina Generation : 2024-04-30 20:08:19

© *Jutge.org*, 2006–2024. https://jutge.org