
Jutge.org
The Virtual Learning Environment for Computer Programming

Haskell — Binary tree P37072 en

In this problem you have to write several functions for generic binary trees. The definition
of the trees is given by:

data Tree a = Node a (Tree a) (Tree a) | Empty deriving (Show)

That is, a tree with elements of type a is, either an empty tree, either a node with an element
(of type a) and two other trees of the same type. The deriving (Show) statement simply
enables an visualization of trees.

1. Write a function size :: Tree a → Int that, given a tree, returns its size, that is, the number
of node it contains.

2. Write a function height :: Tree a → Int that, given a tree, returns its height, assuming
that empty trees have zero height.

3. Write a function equal :: Eq a ⇒ Tree a → Tree a → Bool that, given two trees, tells whether
they are the same.

4. Write a function isomorphic :: Eq a ⇒ Tree a → Tree a → Bool that, given two trees, tells
whether they are isomorphic, that is, if one can obtain one from the other flipping
some of its descendants.

5. Write a function preOrder :: Tree a → [a] that, given a tree, return its pre-order traversal.

6. Write a function postOrder :: Tree a → [a] that, given a tree, return its post-order traver-
sal.

7. Write a function inOrder :: Tree a → [a] that, given a tree, return its in-order traversal.

8. Write a function breadthFirst :: Tree a → [a] that, given a tree, return its traversal by lev-
els.

9. Write a function build :: Eq a ⇒ [a] → [a] → Tree a that, given a pre-order traversal of
a tree and an in-order traversal of the same tree, returns the original tree. You can
assume that the three has no repeated elements.

10. Write a function overlap :: (a → a → a) → Tree a → Tree a → Tree a that, given two trees,
returns its overlapping using a function. Overlapping two trees with a function con-
sists in placing the two trees one on the other and combine the double nodes using the
given function.

Scoring

Each function scores 10 points.



Sample input

let t7 = Node 7 Empty Empty

let t6 = Node 6 Empty Empty

let t5 = Node 5 Empty Empty

let t4 = Node 4 Empty Empty

let t3 = Node 3 t6 t7

let t2 = Node 2 t4 t5

let t1 = Node 1 t2 t3

let t1’ = Node 1 t3 t2

size t1

height t1

equal t2 t3

isomorphic t1 t1’

preOrder t1

postOrder t1

inOrder t1

breadthFirst t1

build [1,2,4,5,3] [4,2,5,1,3]

overlap (+) t2 t3

overlap (+) t1 t3

Sample output

7

3

False

True

[1,2,4,5,3,6,7]

[4,5,2,6,7,3,1]

[4,2,5,1,6,3,7]

[1,2,3,4,5,6,7]

Node 1 (Node 2 (Node 4 Empty Empty) (Node 5 Empty Empty)) (Node 3 Empty Empty)

Node 5 (Node 10 Empty Empty) (Node 12 Empty Empty)

Node 4 (Node 8 (Node 4 Empty Empty) (Node 5 Empty Empty)) (Node 10 (Node 6 Empty Empty) (Node 7 Empty

Problem information

Author : Jordi Petit
Translator : Jordi Petit
Generation : 2024-04-30 20:21:48

© Jutge.org, 2006–2024.
https://jutge.org


