## Jutge.org

The Virtual Learning Environment for Computer Programming

## Interval covering

P37902_en
Given several real numbers $x_{1}, \ldots, x_{n}$, we want to find the smallest possible set of closed intervals of length 1 that cover those real numbers. In other words, we must find a set of intervals $\left\{\left[y_{1}, y_{1}+1\right], \ldots,\left[y_{m}, y_{m}+1\right]\right\}$ such that

- for every $x_{i}$, there exists some $j$ such that $x_{i} \in\left[y_{j}, y_{j}+1\right]$;
- $m$ is minimum.

For instance, if the $x_{i}$ 's are 1.4, 1.9, 2.3 i 2.7 , a possible solution is $\{[1.2,2.2],[1.8,2.8]\}$, because every $x_{i}$ is inside of (at least) one of the two intervals, and it is not possible to cover the four real numbers with only one interval.

## Input

Input consists of several cases, each with a number $n$ followed by $n$ different real numbers. Assume $n \leq 10^{5}$.

## Output

For every case, print the minimum number of closed intervals of length 1 that cover the given real numbers.

## Sample input

```
4 1.4 1.9 2.3 2.7
6
2 -2.5 -3.5
```

| Sample output |
| :--- |
| 2 |
| 3 |
| 1 |

## Problem information

Author: Amalia Duch
Translator : Amalia Duch
Generation : 2024-04-30 20:38:37
© Jutge.org, 2006-2024.
https://jutge.org

