Jutge.org

The Virtual Learning Environment for Computer Programming

Optimal separation
Setzè Concurs de Programació de la UPC - Final (2018-09-19)
Consider the sequence $1,2, \ldots, n$. If we use k separators among those numbers, we get $k+1$ subsequences. Let s_{i} be the sum of the elements of the i-th subsequence. Let m be the minimum s_{i}, and let M be the maximum s_{i}. Given n and k, please choose where to place the k separators so that $M-m$ is as small as possible.

Input

Input consists of several cases, each one with n and k. You can assume $1 \leq n \leq 50$ and $0 \leq k \leq \min (n-1,10)$.

Output

For every case, print $k+3$ lines. On the first line print the minimum $M-m$. Afterwards, print a line for each of the $k+1$ subsequences, in order, with the numbers and their sum. Finally, print a line with 10 dashes. Follow exactly the format of the sample output. If there is more than one optimal solution, choose any one.

Observation

The expected solution is a dynamic programming. This problem could also be solved by precomputing the solutions. But, if you do that, your solution will be manually rejected.

Sample input

40
5010

Sample output

0
$1+2+3+4=10$

40
$1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120$
$16+17+18+19+20+21+22=133$
$23+24+25+26+27=125$
$28+29+30+31=118$
$32+33+34=99$
$35+36+37=108$
$38+39+40=117$
$41+42+43=126$
$44+45+46=135$
$47+48=95$
$49+50=99$

Problem information

Author : Josep Grané
Generation : 2024-05-02 18:44:26
© Jutge.org, 2006-2024.
https://jutge.org

