Jutge.org

The Virtual Learning Environment for Computer Programming

Subgraph isomorphism

P57656_en
Tercer Concurs de Programació de la UPC - Semifinal (2005-09-14)
Given an undirected graph $G=(V, E)$, where V is a set of vertices and E is a set of edges, a connected component of G is a maximal connected subgraph of G. In other words, every two vertices x and y of V belong to the same connected component if and only if there is a path from x to y. In the example below there are 7 connected components.

Given two undirected (sub)graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right), G_{1}$ and G_{2} are said to be isomorphic if and only if there exists a bijection $f: V_{1} \rightarrow V_{2}$ such that for every $x, y \in V_{1}$, $\{x, y\} \in E_{1} \Leftrightarrow\{f(x), f(y)\} \in E_{2}$. In the example above, the connected component with vertices $\{5,2,9\}$ is isomorphic to exactly two connected components: those with vertices $\{12,15,8\}$ and $\{6,10,1\}$.
Write a program such that, for every given undirected graph G, computes the number of pairs (not counting order) of connected components of G that are isomorphic. For instance, the result for the graph above is $4:\{5,2,9\}$ with $\{12,15,8\},\{5,2,9\}$ with $\{6,10,1\},\{12,15,8\}$ with $\{6,10,1\}$, and $\{7\}$ with $\{4\}$.

Input

Input consists of several graph descriptions. Each one begins with the number of vertices n and the number of edges m. Follow m pairs of different numbers, each between 0 and $n-1$. You can assume $1 \leq n \leq 10000$. No edges are repeated. Every given connected component has at most 6 vertices.

Output

For every graph, print the number of connected components that are pairwise isomorphic.

Sample input

```
1610
5
101 0
```


Sample output

4
5050

Problem information

Author : Salvador Roura
Generation : 2024-05-02 19:59:57
© Jutge.org, 2006-2024.
https://jutge.org

