Jutge.org

The Virtual Learning Environment for Computer Programming

Maximum matching

Examen final d'Algorísmia, FME (2013-01-15)

Given an undirected graph with *n* vertices, a matching is a subset of the edges with no common vertices. Write a program to tell if a given graph has a maximum matching, that is, a grouping of the vertices in n/2 pairs such that all vertices belong to some pair, and that both vertices of every pair are directly connected.

Input

Input consists of several cases. Each case begins with *n* and the number of edges *m*, followed by *m* pairs of vertices. Assume $2 \le n \le 20$, that *n* is even, that vertices are numbered from 1 to *n*, that there are no repeated edges nor edges connecting a vertex to itself, and that there is no isolated vertex.

Output

For every case, tell if the given graph has a maximum matching.

Observation

There are polynomial-time algorithms, more or less complicated, to solve this problem. Here, we settle for a simple backtracking.

Sample input	Sample ou
2 1	yes
1 2	yes
	no
4 4	no
1 2	
3 1	
4 1	
2 3	
4 3	
1 2	
1 3	
1 4	
6 8	
1 2	
1 4	
2 3	
2 5	
2 6	
3 4	
4 5	
4 6	

tput

Problem information

Author : Salvador Roura Translator : Salvador Roura Generation : 2024-05-02 20:21:08

© *Jutge.org*, 2006–2024. https://jutge.org