Jutge.org

The Virtual Learning Environment for Computer Programming

Huffman codes P62266_en

Suppose that n different symbols are used in the writing of a certain language. A simple way
to code a text consists in assigning [log, 1] bits to each symbol. For instance, consider the
five vowels and the three more frequent consonants in Catalan. According to the following
table, a “normal” coding of the word LIE would be 011100000:

Letter | “Normal” codification | Relative frequence | Huffman coding

E 000 21 01

A 001 19 111

S 010 12.7 101

L 011 11.6 100

I 100 10.6 001

R 101 10.2 000

O 110 8.6 1101

U 111 6.3 1100

Now, suppose that we know the probabilities (or relative frequences) of every symbol (for
instance, according to the table, out of 100 symbols among the eight chosen, 21 are e’s, 19
are a’s, etcetera). We can obtain a more efficient coding on the average by assigning less bits
to frequent letters. According to the table, the Huffman coding of the word LIE would be
10000101, with only eight bits instead of nine.

The construction of a Huffman coding is relatively simple: Repeatedly, choose the two less
frequent symbols, arbitrarily assign a bit (0 or 1) to each one to make them different, and
consider them both a unique symbol from now on. Stop when only one symbol remains.

For instance, this is the tree corresponding to the Huffman algorithm for the eight characters
of the table above. The quantity inside each node is the relative frequence of all the symbols
below it.

In this example, the average length of the Huffman coding of a symbol is only
0.21%2+40.19%3+40.127 %34 0.116 * 34 0.106 * 3+ 0.102 * 3 + 0.086 * 4 + 0.063 x4 ~ 2.9390,

smaller than the average length of a “normal” coding, which obviously is 3. For more biased
probability distributions, much more significant savings can be obtained.

Write a program that reads the relative frequences of some letters, and computes the average
length of their Huffman coding.

Input

Input consists of the number of symbols n > 2, followed by the relative frequences of the n
symbols. These frequences are all non-negative, and their sum is 100.

Output

Print with four digits after the decimal point the expected number of bits per letter.

Sample input 1

8
19 21 10.6 8.6 6.3 12.7 11.6 10.2

Sample output 1

expected number of bits per letter: 2.9390

Sample input 2

4
52 3 90

Sample output 2

expected number of bits per letter: 1.1500

Problem information

Author : Salvador Roura
Translator : Carlos Molina
Generation : 2024-05-02 20:45:08

© Jutge.org, 2006-2024.
https: //jutge.org

