Jutge.org

The Virtual Learning Environment for Computer Programming

Firefighters and grannies (2)

Examen parcial d'Algorísmia, FME (2017-11-06)

The firefighters of a distant country want to protect the grannies inside *n* schools. All the schools are in a row on a street, numbered in order from 1 to *n*. At each school *j* there are i_j grannies. The firefighters can form *g* groups, and each group can only go to a single school. If a group goes to school *j*, it protects all the grannies there. In addition, it also indirectly protects half the grannies in school j - 1, assuming that it exists and that it is not already fully protected by another group; and similarly with school j + 1.

What is the maximum number of grannies that can be protected?

Input

Input consists of several cases, each one with *g* and *n*, followed by the i_j 's. You can assume $1 \le g \le n \le 3000$, and that all the i_j 's are even natural numbers between 2 and 10^5 .

Output

For every case, print how many grannies can be protected.

Hint

The expected solution for this problem is a dynamic programming code with two mutual recurrences and cost $O(g \cdot n)$.

Sample input

1	1	100000
1	2	10 20
1	3	10 80 20
1	3	10 20 80
3	3	10 20 80
3	9	4 8 2 4 8 8 6 2 8
9	9	2 2 2 2 2 2 2 2 2 2

Sample output

100000
25
95
90
110
36
18

Problem information

Author : Salvador Roura Translator : Salvador Roura Generation : 2024-05-02 21:29:27

© *Jutge.org*, 2006–2024. https://jutge.org