Jutge.org

The Virtual Learning Environment for Computer Programming

Petr's problem

Novè Concurs de Programació de la UPC - Final (2011-09-21)
A permutation p_{1}, \ldots, p_{n} is a sequence of numbers between 1 and n such that each number appears exactly once. An inversion in a permutation is a pair of indices (i, j) such that $i<j$ but $p_{i}>p_{j}$. The weight of an inversion (i, j) is $j-i$.
How many permutations of n elements exist where the sum of weights of all inversions is equal to x ? For instance, there are exactly two such permutations for $n=4$ and $x=4$: $3,2,1,4$ and $1,4,3,2$.

Input

Input consists of several cases, each one with n and x. You can assume $1 \leq n \leq 14$ and $0 \leq x \leq(n+1) n(n-1) / 6$.

Output

For every case, print the number of permutations of n elements such that the sum of weights of all inversions is x.

Sample input

44
10
14455
14200

```
Sample output
2
1
1
486253544
```


Problem information

Author: Petr Mitrichev
Generation : 2024-05-02 23:39:26
© Jutge.org, 2006-2024.
https://jutge.org

