Jutge.org

The Virtual Learning Environment for Computer Programming

How many paths?

Examen parcial d'Algorísmia, FME (2012-11-13)

Consider an $n \times m$ matrix where each cell (i, j) has a number x_{ij} to indicate that you can jump down to a distance (measured as number of cells) between 1 and x_{ij} , either vertically, diagonally to the left, or diagonally to the right. If we call (0, 0) the upper left position, all the visited cells must have coordinates between 0 and n for the rows (this includes a row below the last one), and between 0 and m - 1 for the columns. The goal is to start at row 0, and get exactly to row n. How many paths exist?

Input

Input consists of several cases, each with n, m, and n rows with m natural numbers. Suppose that n, m and the x_{ij} are between 1 and 100.

Output

For	ever	y case,	prin	t the	numb	er o	of paths	that	begin	at	any	cell	in	the	top	row	and	end	in
any	r cell j	just bel	low t	he bo	ottom r	ow,	, modul	o 10 ⁹	+7.										

Sample input	Sample output						
1 1 1	1 7 17						
1 3 1 1 1	16 110						
2 3 1 1 1 1 1 1							
5 1 99 99 99 99 99							
3 4 3 7 6 3 1 2 4 2 5 1 2 9							

Problem information

Author : Salvador Roura Translator : Salvador Roura Generation : 2024-05-03 00:42:30

© *Jutge.org*, 2006–2024. https://jutge.org