Jutge.org

The Virtual Learning Environment for Computer Programming

Pillars

Segon Concurs de Programació de la UPC - Final (2004-09-29)

The world-famous architect Mr. Fruí from Reus is planning to build a colossal pillar H units high. Mr. Fruí has n black pieces with heights b_{1}, \ldots, b_{n}, and m white pieces with heights w_{1}, \ldots, w_{m}. According to his design, the pillar must have four pieces: a black piece at its bottom, a white piece above it, another black piece above, and finally a white piece at the top of the pillar.
Mr. Fruí wishes to know which combination of four pieces with total height H is the most stable. Given two combinations $A=\left[a_{1}, a_{2}, a_{3}, a_{4}\right]$ and $B=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]$ (where a_{1} denotes the height of the bottom (black) piece of the pillar A, a_{2} denotes the height of the second (white) piece of A, and so on), we say that A is more stable than B if $a_{1}>b_{1}$, or if $a_{1}=b_{1}$ but $a_{2}>b_{2}$, etc. In other words, A is more stable than B if and only if the sequence of heights of the pieces of A is lexicographically larger than the sequence of heights of the pieces of B.

Write a program such that, given the desired height H of the pillar, the heights of the black pieces and the heights of the white pieces, computes which pillar (if any) of height exactly H would be the most stable.

Input

Input consists of several cases, each in three lines. The first line has H, an integer number between 1 and $4 \cdot 10^{8}$. The second and third lines consist respectively of b_{1}, \ldots, b_{n} and of w_{1}, \ldots, w_{m}. A blank line separates two cases. Assume $2 \leq n \leq 1000$ and $2 \leq m \leq 1000$, and that no piece has a height larger than 10^{8}.

Output

For every case, print the sequence of heights of the pieces of the most stable pillar, from bottom to top. If no solution exists, print "no solution".

Sample input

100
2020
$\begin{array}{llll}30 & 10 & 30 & 50\end{array}$
100
$20 \quad 10 \quad 4$
$50 \quad 30 \quad 45$

Sample output

Problem information

Author: Salvador Roura
Generation : 2024-05-03 00:52:59
© Jutge.org, 2006-2024.
https://jutge.org

