
Mad Max

Ivan Geffner Salvador Roura

May 3, 2024

1



1 Game rules

In this game, 4 players have control over an army of warriors and cars on a
60× 60 board with 8 cities. The goal of the game is to “conquer” as many cities
as possible.

Teams are identified with numbers from 0 to 3. Initially, every team owns
2 of the cities. Every round, the number of cities of each team is added to the
corresponding score. The winner of the game is the player with the highest
score after the last round.

At the beginning of the game, each team has 23 units: 20 warriors and 3 cars.
The warriors start inside the cities of their teams, with at least one warrior in
each city. The cars start at the edges of the board, each on a road.

The board has six kinds of cells: Desert, City, Road, Water, (fuel) Station, and
Wall. Warriors can move on desert, cities and roads. Cars can only move
on desert and roads. No cell can have more than one unit on it. Water cells
recharge adjacent warriors with water, stations recharge adjacent cars with
fuel, and walls are just impassable obstacles with no other purpose.

The game lasts 500 rounds, numbered from 0 to 499. The units of player x
are only allowed to move at the rounds that are congruent to x modulo 4. For
instance, player 1 can only move at rounds 1, 5, 9, etc. There is one exception:
cars that have fuel and are located on a road can move regardless of the round
number. Additionally, every unit can move at most once per round.

At the end of each round, and for every city, if one team has strictly more
warriors inside that city than any other team, then that team conquers the city
(unless the city was already owned by that team, when ownership does not
change). A city is a (horizontally and vertically) connected component of cells
of type City.

Units can try to move to any adjancent cell, either horizontally, vertically, or
diagonally, as long as the kind of the adjacent cell is compatible with the kind
of the unit. If the adjacent cell is empty, the unit moves there. Otherwise, some
rules apply (see below). Units cannot move outside the board.

Initially, warriors have 40 units of food and also 40 units of water, and cars
have 100 units of fuel. Every round when they are allowed to move, warriors
lose 1 unit of food and 1 unit of water, and cars lose 1 unit of fuel. A warrior
whose food or water level reaches 0 dies, and a randomly choosen rival team
gets another warrior. A car with no fuel does not “die”, but becomes slow not
only on desert but also on roads. Units can never have more food, water or
fuel than its initial amount.

2



Any warrior on a City cell recharges its food level to 40, irrespective of the team
that owns the city. Any warrior adjacent to a Water cell recharges its water level
to 40. Any car adjacent to a Station cell recharges its fuel level to 100. Warriors
will have to cross at least one road to reach water from a city (or back). Fuel
stations will always be located on some crossroad.

A warrior can try to move to a cell where there is another warrior or a car.
Similarly, a car can try to move to a cell where there is a warrior or another car.
We first explain the rules that apply in the usual case when the two involved
teams are different.

A car that moves to a cell with a warrior runs over it and kills (captures) it.
Every moment, any dead unit dissapears from the board, and a fresh unit will
appear at the next round, as explained below.

If a car moves to a cell with another car, both cars explote and dissapear, and
two new cars are given to the other two teams.

A warrior that moves to a cell with a car comitts suicide, and a new warrior is
given to the rival team.

Warriors can attack any adjacent warrior by an order to move to the rival’s
position. In general (when the atackee has at least 6 units of both of them), the
attacked warrior will lose 6 units of food and 6 units of water. Moreover, if
any of those levels reaches 0, the attackee will get captured by the rival team.
Furthermore, half of the food and water stolen (usually 3 units of each) will be
recharged to the attacker, never exceeding the limit of 40.

3



There is one exception to this rule: if two warriors are inside a city and one of
them attacks the other, then the thunderdome rule is used: “Two Men Enter,
One Man Leaves”. After a bloody fight, one of the warriors dies, whereas the
winner’s health remains unchanged.

The survivor of a thunderdome fight is decided by the board at random, with
probabilities proportional to the water levels of the contestants. For instance,
if one has 30 units of water and the other one 20 units, then the former will
survive with probability 3/5, while the latter will survive with probability 2/5.

Note that units are allowed to attack units of the same team. As a general rule,
this will probably be a bad idea, although in some cases it might be useful to
sacrifice an own unit in order to save another one.

When the attacker and the atackee belong to the same team, the rules are
adapted as follows. If a warrior gets killed, the new warrior will be given to
another team. If a car collides with another car, the two new cars will be given
to two other different teams. All those new teams will be chosen uniformly at
random.

As a result of all the above rules, the total number of warriors and the total
number of cars remains constant during the whole game.

Every round, more than one order can be given to the same unit, although only
the first such order (if any) will be selected. Any player program that tries to
give more than 1000 orders during the same round will be aborted.

The selected movements of every round will be executed using a random order.
For instance, if a warrior tries to move to the position of a friend car, and that

4



car tries to move to an empty position, then if the warrior moves first it will
commit suicide, and afterwards the car will move. Otherwise, if the car moves
first, both units will move and survive. As another example, if two enemy cars
try to run over a warrior of another team, which does not move, the team of the
first car to move will capture the warrior, and afterwards both cars will collide
and explote.

After all the selected movements of a round are played, the units captured
by each team are reborn. Whenever possible, cars will be placed on roads at
the edges of the board, and warriors on desert cells also at the edges, always
at a reasonable distance of other units. In the rare cases when this cannot be
accomplished, cars will be placed on roads not at the edges, and warriors on
desert cells not at the edges, also at a reasonable distance of other units. In even
more exceptional situations, cars will be placed on any legal cell, and warriors
also on any legal cell, but never inside a city.

If you need (pseudo) random numbers, you must use two methods provided
by the game: random(l, u), which returns a random integer in [l..u], and
(less frequently) random permutation(n), which returns a vector<int> with a
random permutation of [0..n-1].

Note that the valid directions are Bottom, BR, Right, RT, Top, TL, Left, LB and
None, corresponding to integers from 0 to 8. This circular definition can be
used to simplify the implementation of your player. See the Demo player for
some examples.

A game is defined by a board and the following set of parameters:

• nb players : Number of teams in the game (4).

• nb rounds: Number of rounds that will be played (500).

• nb cities : Number of cities on the board (8).

• nb warriors: Initial number of warriors per player (20).

• nb cars: Initial number of cars per player (3).

• warriors health : The maximum (and initial) food and water levels of
every warrior (40).

• cars fuel : The maximum (and initial) fuel of every car (100).

• damage: The amount of damage that a warrior inflicts when attacking (6).

• rows: Vertical size of the board (60).

• cols : Horizontal size of the board (60).

5



2 Programming the game

The first thing you should do is downloading the source code. It includes a
C++ program that runs the games and an HTML viewer to watch them in a
reasonable animated format. Also, a “Null” player and a “Demo” player are
provided to make it easier to start coding your own player.

2.1 Running your first game

Here, we will explain how to run the game under Linux, but it should work
under Windows, Mac, FreeBSD, OpenSolaris, . . . You only need a recent g++
version, make installed in your system, plus a modern browser like Firefox or
Chrome.

1. Open a console and cd to the directory where you extracted the source
code.

2. Run

make all

to build the game and all the players. Note that Makefile identifies as a
player any file matching AI*.cc.

3. This creates an executable file called Game. This executable allows you to
run a game using a command like:

./Game Demo Demo Demo Demo -s 30 -i default.cnf -o default.res

This starts a match, with random seed 30, of four instances of the player
Demo, in the board defined in default.cnf. The output of this match is
redirected to default.res.

4. To watch a game, open the viewer file viewer.html with your browser
and load the file default.res.

Use

./Game --help

to see the list of parameters that you can use. Particularly useful is

./Game --list

to show all the recognized player names.

If needed, remember that you can run

make clean

to delete the executable and object files and start over the build.

6



2.2 Adding your player

To create a new player with, say, name Rockatansky, copy AINull.cc (an
empty player that is provided as a template) to a new file AIRockatansky.cc.
Then, edit the new file and change the

#define PLAYER NAME Null

line to

#define PLAYER NAME Rockatansky

The name that you choose for your player must be unique, non-offensive and
at most 12 characters long. This name will be shown in the website and during
the matches.

Afterwards, you can start implementing the virtual method play () , inherited
from the base class Player. This method, which will be called every round,
must decide the orders to give to your units.

You can define auxiliary type definitions, variables and methods inside your
player class, but the entry point of your code will always be the play () method.

7



From your player class you can also call functions to access the state of the
game. Those functions are made available to your code using inheritance, but
do not tell your Software Engineering teachers because they might not like it.
The documentation about the available functions can be found in an additional
file.

Note that you must not edit the factory () method of your player class, nor the
last line that adds your player to the list of available players.

2.3 Playing against the “Dummy” player

To test your strategy against the “Dummy”, we provide AIDummy.o object files
for this player. This way you still will not have the source code of our “Dummy”,
but you will be able to add it as a player and compete against it locally.

To add the “Dummy” player to the list of registered players, you will have to
edit the Makefile file and set the variable DUMMY OBJ to the appropriate value.
Remember that object files contain binary instructions targeting a specific ma-
chine, so we cannot provide a single, generic file. If you miss an object file for
your architecture, contact us and we will try to supply it.

You can also ask your friends for the object files of their players and add them
to the Makefile by setting the variable EXTRA OBJ.

2.4 Restrictions when submitting your player

When you think that your player is strong enough to enter the competition,
you can submit it to the Jutge. Since it will run in a secure environment to
prevent cheating, some restrictions apply to your code:

• All your source code must be in a single file (like AIRockatansky.cc).

• You cannot use global variables (instead, use attributes in your class).

• You are only allowed to use standard libraries like iostream, vector, map,
set, queue, algorithm, cmath, . . . In many cases, you don’t even need to
include the corresponding library.

• You cannot open files nor do any other system calls (threads, forks, . . . ).

• Your CPU time and memory usage will be limited, while they are not in
your local environment when executing with ./Game.

• Your program should not write to cout nor read from cin. You can write
debug information to cerr, but remember that doing so in the code that
you upload can waste part of your limited CPU time.

• Any submission to the Jutge must be an honest attempt to play the game.
Any try to cheat in any way will be severely penalized.

8



3 Tips

• Read the headers of the classes that you are going to use. Do not worry
about the private parts or the implementation.

• Start with simple strategies, easy to code and debug, since this is exactly
what you will need at the begining.

• Define simple (but useful) auxiliary methods, and make sure that they work
properly.

• Before competing with your classmates, focus on defeating the “Dummy”.

• Keep a copy of the old versions of your player. Make it fight against its
previous versions to measure the improvements.

• As always, compile and test your code often. It is much easier to trace a
bug when you have only changed few lines of code.

• Use cerr to output debug information, and add asserts to make sure that
your code is doing what it should do. Remember to remove them before
uploading your code, to avoid making it slower.

• When debuging a player, remove the cerrs that you may have in others
players’ code, so as to only see the messages that you want.

• If using cerr is not enough to debug some of your code, learn how to use
valgrind, gdb or any other debugging tool.

• Make sure that your program is fast enough. The CPU time that you are
allowed to use is rather short.

• Try to figure out the strategies of other players watching several games.
This way, you can try to react against them, or even imitate or improve
them in your own code.

• Do not give your code to anybody. Not even an old version. Not even to
your best friend. We use plagiarism detectors to compare your programs,
also against submissions to games of previous years.

• You can, however, share the compiled .o files.

• You can submit new versions of your program at any time.

• Do not wait until the last minute to submit your player. When there are
lots of submisions at the same time, it takes longer for the server to run
the games, and it could be too late!

• Do not assume that the code that you last submitted is the one used by
our server to play your official matches. Make sure to choose the code
that you want to represent you.

• Remember: Keep your code simple, build often, test often. Or regret.

9


