Jutge.org

The Virtual Learning Environment for Computer Programming

Some Hamiltonian paths

Examen parcial d'Algorísmia, FME (2014-11-14)
Consider a directed graph with n vertices and all the $n(n-1)$ possible arcs, some of which are painted. How many Hamiltonian paths are in the graph starting at vertex 0 , ending at vertex $n-1$, and such that they do not traverse two consecutive painted arcs?

Input

Input consists of several cases. Every case begins with n, followed by an $n \times n$ matrix, where the position (i, j) has the color of the arc from vertex i to vertex j. A one indicates a painted arc, and a zero a non-painted arc. The diagonal (which is useless) only has zeroes. You can assume $n \geq 2$.

Output

For every case, print the number of permutations of the n vertices that start at 0 , end at $n-1$, and do not have three consecutive vertices x, y and z such that the two arcs $x \rightarrow y$ and $y \rightarrow z$ are both painted. The test cases are such that the answer is smaller than 10^{6}.

Sample input
 1
 10
 11
 00
 10
 10
 01
 00
 10000
 $\begin{array}{llll}0 & 1 & 0 & 0\end{array}$
 $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$
 $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$
 1000

Problem information

Author: Salvador Roura
Translator: Salvador Roura
Generation : 2024-05-03 08:32:54
© Jutge.org, 2006-2024.
https://jutge.org

