Jutge.org

The Virtual Learning Environment for Computer Programming

P90339_en Permutations Olimpiada Informática Española — Final 2007 (2007)

A permutation of the set $\{1, 2, ..., n\}$ is a way to sort those numbers. For instance, [123], [132], [213], [213], [312], and [321] are the 6 possible permutations for n = 3.

An alternative way to describe a permutation is giving its cycles. For instance, the permutation [6351274] can be written (1 6 7 4) (2 3 5). This is, to the position 1 goes the 6, to the position 6 goes the 7, to the position 7 goes the 4, to the position 4 goes the 1 (first cycle), to the position 2 goes the 3, to the position 3 goes the 5, and to the position 5 goes the 2 (second cycle). Notice that there are various ways to describe a permutation using cycles. For instance, the last permutation can be written also as (3 5 2) (6 7 4 1).

As can be seen on the right, the same permutation can be applied repeatedly. Thus, applying twice [6351274] [7526341] = (7 1) (6 4) (5 3 2) is obtained.

After three times we have $[4237516] = (4\ 7\ 6\ 1)\ (2)\ (3)\ (5)$, and after 4 times $[1364267] = (1)\ (4)\ (6)\ (7)\ (3\ 5\ 2)$. It is easy to see than after 12 times $[1234567] = (1)\ (2)\ (3)\ (4)\ (5)\ (6)\ (7)$ would be obtained.

Your task is to write a program that, for each given permutation, prints the result to apply it a certain number of times.

Input

The input consists of a sequence of cases. Each case starts with a line with n, c, and m (respectively, the number of elements of the permutation, its number of cycles, and the number of tests). c lines follow, one per cycle. Each cycle follows exactly the format of the instances. Then, m lines come, each one with k (the number of times that the permutation must be applied). You can assume $1 \le n \le 10000$, $1 \le c \le n$, $m \ge 1$, and $k \ge 1$.

Output

For each case of the input, your program must print the permutation obtained after applying k times the given permutation. It must print a line in white in the end of the answers for each case. Follow the format of the instances.

Score

- (25 points)
- (20 points) Some test cases will exclusively contain cases like the ones in the instance of input 2, in which all the *k* ≤ 100.
- (55 points) Other test cases will contain cases of every kind, in which $k \le 10^9$.

Sample input 1 7 2 3 (1 6 7 4) (2 3 5) 1 1	Sample output 1 6 3 5 1 2 7 4 6 3 5 1 2 7 4 6 3 5 1 2 7 4 1 2 3 4		
1 4 4 1 (1) (4) (2) (3) 1			
Sample input 2	Sample output 2		
7 2 8 (1 6 7 4) (2 3 5) 1 2 3 4 12 16 20 24			
4 1 3 (2 3 4 1) 1 2 100			
Sample input 3	Sample output 3		
7 2 1	1 3 5 4 2 6 7		

1000000000

(3 5 2) (6 7 4 1)

Scoring

• TestA:

Some test cases will exclusively contain cases like the ones in the instances of input 1, in which all the k are 1.

• TestB:

Some test cases will exclusively contain cases like the ones in the instance of input 2, in which all the $k \leq 100$.

• TestC:

Other test cases will contain cases of every kind, in which $k \le 10^9$.

25 Points

20 Points

55 Points

Sample input 1

7 2 3 (1 6 7 4) (2 3 5) 1 1 4 4 1 (1) (4) (2) (3) 1

Sample input 2

Sample input 3

7 2 1 (3 5 2) (6 7 4 1) 100000000

Problem information

Author : Omer Giménez Translator : Carlos Molina Generation : 2024-05-03 08:34:35

© *Jutge.org*, 2006–2024. https://jutge.org

Sample output 1

6	3	5	1	2	7	4
6	3	5	1	2	7	4
6	3	5	1	2	7	4
1	2	3	4			

Sample output 2

6	3	5	1	2	7	4
7	5	2	6	3	4	1
4	2	3	7	5	1	6
1	3	5	4	2	6	7
1	2	3	4	5	6	7
1	3	5	4	2	6	7
1	5	2	4	3	6	7
1	2	3	4	5	6	7
2	3	4	1			
3	4	1	2			
1	2	3	4			

Sample output 3

1 3 5 4 2 6 7