Jutge.org

The Virtual Learning Environment for Computer Programming

Swedish coins (1)
 P95248_en

You have a collection C of n old Swedish coins. Every coin i has a probability p_{i} of landing heads (and a probability $1-p_{i}$ of landing tails). Consider the following experiment for every subset S of C : Flip each coin in S exactly once, and count the number of heads; you win if this number is odd. Let $w(S)$ denote the winning probability of the subset S.
Given two real numbers ℓ and r, and a collection of coins C, how many subsets S of C are such that $\ell<w(S)<r$?

Input

Input consists of several cases. Every case begins with two real numbers ℓ and r, followed by n, followed by $p_{1} \ldots p_{n}$. Assume $0<\ell<r<1,1 \leq n \leq 40$ and $0<p_{i}<1$.

Output

For every case, print the number of subsets S such that $\ell<w(S)<r$. The input cases have no precision issues.

Observation

Please take into account that the result can be larger than 10^{12}.

Sample input

```
0.2 0.4
```

0.2 0.4
10.3
10.3
0.4 0.5
0.4 0.5
10.3
10.3
0.45 0.71
0.45 0.71
2 0.7 0.6
2 0.7 0.6
0.49 0.51
0.49 0.51
5 0.5 0.5 0.5 0.5 0.5

```
5 0.5 0.5 0.5 0.5 0.5
```


Problem information

Author : Salvador Roura
Generation : 2024-05-03 09:29:01
© Jutge.org, 2006-2024.
https://jutge.org

