Jutge.org

The Virtual Learning Environment for Computer Programming

Swedish coins (1)

You have a collection *C* of *n* old Swedish coins. Every coin *i* has a probability p_i of landing heads (and a probability $1 - p_i$ of landing tails). Consider the following experiment for every subset *S* of *C*: Flip each coin in *S* exactly once, and count the number of heads; you win if this number is odd. Let w(S) denote the winning probability of the subset *S*.

Given two real numbers ℓ and r, and a collection of coins C, how many subsets S of C are such that $\ell < w(S) < r$?

Input

Input consists of several cases. Every case begins with two real numbers ℓ and r, followed by $p_1 \dots p_n$. Assume $0 < \ell < r < 1$, $1 \le n \le 40$ and $0 < p_i < 1$.

Output

For every case, print the number of subsets *S* such that $\ell < w(S) < r$. The input cases have no precision issues.

1

0 3

31

Observation

Please take into account that the result can be larger than 10^{12} .

Sample input

0.2 0.4 1 0.3 0.4 0.5 1 0.3 0.45 0.71 2 0.7 0.6 0.49 0.51 5 0.5 0.5 0.5 0.5 0.5

Problem information

Author : Salvador Roura Generation : 2024-05-03 09:29:01

© *Jutge.org*, 2006–2024. https://jutge.org

Sample output